Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10254, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355735

RESUMO

Natural products are a promising source of new compounds with a wide spectrum of pharmacological properties, including antiprotozoal activities. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is one of several neglected tropical diseases with reduced options for treatment, which presents limitations such as toxicity and ineffectiveness in the chronic stage of the disease. Aiming to investigate the Brazilian flora for the discovery of new anti-T. cruzi compounds, the MeOH extract from Porcelia macrocarpa R.E. Fries (Annonaceae) fruit peels displayed potent activity against trypomastigotes and intracellular amastigotes and was subjected to bioactivity-guided fractionation. Using different chromatographic steps, a fraction composed of a mixture of four new chemically related acetogenins was obtained. The compounds were characterized as (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-octadeca-13',17'-dien-11'-inil)butanolide (1), (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-eicosa-13',19'-dien-11'-inil)butanolide (2), (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-octadec-13'-en-11'-inil)butanolide (3), and (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-eicosa-13'-en-11'-inil)butanolide (4) by NMR analysis and UHPLC/ESI-HRMS data. The mixture of compounds 1-4, displayed an EC50 of 4.9 and 2.5 µg/mL against trypomastigote and amastigote forms of T. cruzi, respectively, similar to the standard drug benznidazole (EC50 of 4.8 and 1.4 µg/mL). Additionally, the mixture of compounds 1-4 displayed no mammalian toxicity for murine fibroblasts (CC50 > 200 µg/mL), resulting in a SI > 40.8 and > 83.3 against trypomastigotes and amastigotes, respectively. Based on these results, the mechanism of action of this bioactive fraction was investigated. After a short-time incubation with the trypomastigotes, no alterations in the cell membrane permeability were observed. However, it was verified a decrease in the intracellular calcium of the parasites, without significant pH variations of the acidocalcisomes. The intracellular damages were followed by an upregulation of the reactive oxygen species and ATP, but no depolarization effects were observed in the mitochondrial membrane potential. These data suggest that the mixture of compounds 1-4 caused an irreversible oxidative stress in the parasites, leading to death. If adequately studied, these acetogenins can open new insights for the discovery of new routes of death in T. cruzi.


Assuntos
Annonaceae , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Acetogeninas/farmacologia , Acetogeninas/uso terapêutico , Cálcio/metabolismo , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/metabolismo
2.
Curr Top Med Chem ; 23(3): 159-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515019

RESUMO

BACKGROUND: Chagas disease (American Trypanosomiasis) is classified by the World Health Organization (WHO) as one of the seventeen neglected tropical diseases (NTD), affecting, mainly, several regions of Latin America. INTRODUCTION: However, immigration has expanded the range of this disease to other continents. Thousands of patients with Chagas disease die annually, yet no new therapeutics for Chagas disease have been approved, with only nifurtimox and benznidazole available. Treatment with these drugs presents several challenges, including protozoan resistance, toxicity, and low efficacy. Natural products, including the secondary metabolites found in plants, offer a myriad of complex structures that can be sourced directly or optimized for drug discovery. METHODS: Therefore, this review aims to assess the literature from the last 10 years (2012-2021) and present the anti-T. cruzi compounds isolated from plants in this period, as well as briefly discuss computational approaches and challenges in natural product drug discovery. Using this approach, more than 350 different metabolites were divided based on their biosynthetic pathway alkaloids, terpenoids, flavonoids, polyketides, and phenylpropanoids which displayed activity against different forms of this parasite epimastigote, trypomastigote and more important, the intracellular form, amastigote. CONCLUSION: In this aspect, there are several compounds with high potential which could be considered as a scaffold for the development of new drugs for the treatment of Chagas disease-for this, more advanced studies must be performed including pharmacokinetics (PK) and pharmacodynamics (PD) analysis as well as conduction of in vivo assays, these being important limitations in the discovery of new anti-T. cruzi compounds.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/química , Doença de Chagas/tratamento farmacológico , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Descoberta de Drogas
3.
ACS Omega ; 7(32): 28561-28570, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990437

RESUMO

Chagas disease, caused by Trypanosoma cruzi, affects seven million people worldwide and lacks effective treatments. Using bioactivity-guided fractionation, NMR, and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) spectral analysis, the indole alkaloid 6-bromo-2'-de-N-methylaplysinopsin (BMA) was isolated and chemically characterized from the marine coral Tubastraea tagusensis. BMA was tested against trypomastigotes and intracellular amastigotes of T. cruzi, resulting in IC50 values of 62 and 5.7 µM, respectively, with no mammalian cytotoxicity. The mechanism of action studies showed that BMA induced no alterations in the plasma membrane permeability but caused depolarization of the mitochondrial membrane potential, reducing ATP levels. Intracellular calcium levels were also reduced after the treatment, which was associated with pH alteration of acidocalcisomes. Using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)/MS analysis, alterations of mass spectral signals were observed after treatment with BMA, suggesting a different mechanism from benznidazole. In silico pharmacokinetic-pharmacodynamic (PKPD) parameters suggested a drug-likeness property, supporting the promising usefulness of this compound as a new hit for optimizations.

4.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164158

RESUMO

As part of our continuous studies involving the prospection of natural products from Brazilian flora aiming at the discovery of prototypes for the development of new antiparasitic drugs, the present study describes the isolation of two natural acetylene acetogenins, (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11'-yn-19'-enyl)butanolide (1) and (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11'-ynyl)butanolide (2), from the seeds of Porcelia macrocarpa (Warm.) R.E. Fries (Annonaceae). Using an ex-vivo assay, compound 1 showed an IC50 value of 29.9 µM against the intracellular amastigote forms of Leishmania (L.) infantum, whereas compound 2 was inactive. These results suggested that the terminal double bond plays an important role in the activity. This effect was also observed for the semisynthetic acetylated (1a and 2a) and eliminated (1b and 2b) derivatives, since only compounds containing a double bond at C-19 displayed activity, resulting in IC50 values of 43.3 µM (1a) and 23.1 µM (1b). In order to evaluate the effect of the triple bond in the antileishmanial potential, the mixture of compounds 1 + 2 was subjected to catalytic hydrogenation to afford a compound 3 containing a saturated side chain. The antiparasitic assays performed with compound 3, acetylated (3a), and eliminated (3b) derivatives confirmed the lack of activity. Furthermore, an in-silico study using the SwissADME online platform was performed to bioactive compounds 1, 1a, and 1b in order to investigate their physicochemical parameters, pharmacokinetics, and drug-likeness. Despite the reduced effect against amastigote forms of the parasite to the purified compounds, different mixtures of compounds 1 + 2, 1a + 2a, and 1b + 2b were prepared and exhibited IC50 values ranging from 7.9 to 38.4 µM, with no toxicity for NCTC mammalian cells (CC50 > 200 µM). Selectivity indexes to these mixtures ranged from >5.2 to >25.3. The obtained results indicate that seeds of Porcelia macrocarpa are a promising source of interesting prototypes for further modifications aiming at the discovery of new antileishmanial drugs.


Assuntos
Acetogeninas/farmacologia , Acetileno/farmacologia , Annonaceae/química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Acetogeninas/química , Acetileno/análogos & derivados , Antiprotozoários/química , Humanos , Leishmaniose/tratamento farmacológico , Sementes/química
5.
Nat Prod Rep ; 38(12): 2214-2235, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34913053

RESUMO

Covering: 2000 up to 2021Natural products are an important resource in drug discovery, directly or indirectly delivering numerous small molecules for potential development as human medicines. Among the many classes of natural products, alkaloids have a rich history of therapeutic applications. The extensive chemodiversity of alkaloids found in the marine environment has attracted considerable attention for such uses, while the scarcity of these natural materials has stimulated efforts towards their total synthesis. This review focuses on the biological activity of marine alkaloids (covering 2000 to up to 2021) towards Neglected Tropical Diseases (NTDs) caused by protozoan parasites, and malaria. Chemotherapy represents the only form of treatment for Chagas disease, human African trypanosomiasis, leishmaniasis and malaria, but there is currently a restricted arsenal of drugs, which often elicit severe adverse effects, show variable efficacy or resistance, or are costly. Natural product scaffolds have re-emerged as a focus of academic drug discovery programmes, offering a different resource to discover new chemical entities with new modes of action. In this review, the potential of a range of marine alkaloids is analyzed, accompanied by coverage of synthetic efforts that enable further studies of key antiprotozoal natural product scaffolds.


Assuntos
Alcaloides/uso terapêutico , Antiprotozoários/uso terapêutico , Organismos Aquáticos/química , Produtos Biológicos/uso terapêutico , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Antiprotozoários/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Estrutura Molecular
6.
Phytother Res ; 35(9): 4988-5006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33928690

RESUMO

The SARS-CoV-2 virus, responsible for COVID-19, spread rapidly worldwide and became a pandemic in 2020. In some patients, the virus remains in the respiratory tract, causing pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), and sepsis, leading to death. Natural flavonoids (aglycone and glycosides) possess broad biological activities encompassing antiinflammatory, antiviral, antitumoral, antiallergic, antiplatelet, and antioxidant effects. While many studies have focused on the effects of natural flavonoids in experimental models, reports based on clinical trials are still insufficient. In this review, we highlight the effects of flavonoids in controlling pulmonary diseases, particularly the acute respiratory distress syndrome, a consequence of COVID-19, and their potential use in coronavirus-related diseases. Furthermore, we also focus on establishing a relationship between biological potential and chemical aspects of related flavonoids and discuss several possible mechanisms of action, pointing out some possible effects on COVID-19.


Assuntos
COVID-19 , Flavonoides , Lesão Pulmonar , COVID-19/complicações , Flavonoides/farmacologia , Humanos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/virologia , Pandemias
7.
J Nat Prod ; 83(12): 3698-3705, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33232149

RESUMO

Drimys brasiliensis (Winteraceae) has been investigated in traditional medicine for its anti-inflammatory properties to treat gastric ulcers and allergic and respiratory system diseases as well as for cancer treatment. In this work, we investigate the ability of the sesquiterpene polygodial, isolated from D. brasiliensis stem barks, to modulate the chronic inflammatory response induced by polyester-polyurethane sponge implants in C57BL/6J mice. Daily treatment with polygodial inhibited the macrophage content in the implants as determined by the activity of the N-acetyl-ß-d-glucosaminidase enzyme as well as decreased the levels of CXCL1/KC and CCL2/JE/MCP-1 pro-inflammatory chemokines and the presence of mast cells along the formed fibrovascular tissue. Similarly, the deposition of a new extracellular matrix (total collagen and type I and III collagen fibers) as well as the production of the TGF-ß1 cytokine were attenuated in implants treated with polygodial, showing for the first time its antifibrogenic capacity. The hemoglobin content, the number of newly formed vessels, and the levels of VEGF cytokine, which were used as parameters for the assessment of the neovascularization of the implants, did not change after treatment with polygodial. The anti-inflammatory and antifibrogenic effects of polygodial over the components of the granulation tissue induced by the sponge implant indicate a therapeutic potential for the treatment of inflammatory diseases associated with the development of fibrovascular tissue.


Assuntos
Regulação para Baixo , Drimys/química , Inflamação/prevenção & controle , Sesquiterpenos/isolamento & purificação , Winteraceae/química , Animais , Fibrose/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Rep ; 10(1): 5467, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214193

RESUMO

Neolignan licarin A (1) was isolated from leaves of Nectandra oppositifolia (Lauraceae) and displayed activity against trypomastigote forms of the etiologic agent of American trypanosomiasis, Trypanosoma cruzi. Aiming for the establishment of SAR, five different compounds (1a - 1e) were prepared and tested against T. cruzi. The 2-allyl derivative of licarin A (1d) exhibited higher activity against trypomastigotes of T. cruzi (IC50 = 5.0 µM and SI = 9.0), while its heterocyclic derivative 1e displayed IC50 of 10.5 µM and reduced toxicity against NCTC cells (SI > 19.0). However, these compounds presented limited oral bioavailability estimation (<85%, Papp <1.0 × 10-6 cm/s) in parallel artificial membrane permeability assays (PAMPA) due to excessive lipophilicity. Based on these results, different simplified structures of licarin A were designed: vanillin (2), vanillyl alcohol (3), isoeugenol (4), and eugenol (5), as well as its corresponding methyl (a), acetyl (b), O-allyl (c), and C-allyl (d) analogues. Vanillin (2) and its acetyl derivative (2b) displayed expressive activity against intracellular amastigotes of T. cruzi with IC50 values of 5.5 and 5.6 µM, respectively, and reduced toxicity against NCTC cells (CC50 > 200 µM). In addition, these simplified analogues showed a better permeability profile (Papp > 1.0 × 10-6 cm/s) on PAMPA models, resulting in improved drug-likeness. Vanillyl alcohol acetyl derivative (3b) and isoeugenol methyl derivative (4a) displayed activity against the extracellular forms of T. cruzi (trypomastigotes) with IC50 values of 5.1 and 8.8 µM respectively. Based on these results, compounds with higher selectivity index against extracellular forms of the parasite (1d, 1e, 3d, and 4a) were selected for a mechanism of action study. After a short incubation period (1 h) all compounds increased the reactive oxygen species (ROS) levels of trypomastigotes, suggesting cellular oxidative stress. The ATP levels were increased after two hours of incubation, possibly involving a high energy expenditure of the parasite to control the homeostasis. Except for compound 4a, all compounds induced hyperpolarization of mitochondrial membrane potential, demonstrating a mitochondrial imbalance. Considering the unique mitochondria apparatus of T. cruzi and the lethal alterations induced by structurally based on licarin A, these compounds are interesting hits for future drug discovery studies in Chagas disease.


Assuntos
Antiparasitários/isolamento & purificação , Antiparasitários/farmacologia , Produtos Biológicos/isolamento & purificação , Doença de Chagas/tratamento farmacológico , Lauraceae/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Folhas de Planta/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Lignanas/síntese química , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Trypanosoma cruzi/metabolismo
9.
Bioorg Chem ; 95: 103510, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884137

RESUMO

As part of our continuous studies on prospecting metabolites from Brazilian plant species with pharmacologic activity against Trypanosoma cruzi, the n-hexane extract from twigs of Nectandra barbellata (Lauraceae) was subjected to a bioactivity-guided fractionation to afford the sesquiterpene costic acid. As results, costic acid induced a trypanocidal effect with IC50 of 37.8 and 7.9 µM to trypomastigotes and intracellular amastigotes, respectively. When tested in L929 cells, no cytotoxicity was detected in the highest tested concentration (CC50 > 200 µM), resulting in SI values >5 and >25 to trypomastigotes and amastigotes, respectively. Based on these promising results against T. cruzi, a mechanistic study of the parasite death was investigated. The flow cytometry analysis of costic acid-treated parasites showed depolarization of the plasma membrane electric potential. Spectrofluorimetrical analysis and transmission electron microscopy showed no evidence of plasma membrane permeability alteration of trypomastigotes, but strong ultrastructural damage, evidenced by large vacuoles. Although Ca2+ and reactive oxygen species (ROS) levels were unaltered after short time incubation with costic acid, it rapidly affected the mitochondria, leading to a depolarized potential of the membrane, reducing the ATP levels. In silico studies of costic acid showed good predictions for drug-likeness, with adherence to Lipinskís rules of five (RO5), good ADMET properties and no alerts for Pan-Assay Interference Compounds (PAINS). Therefore, costic acid demonstrated promising activity against T. cruzi parasites, with high selectivity to intracellular amastigotes. Considering the lethal action of costic acid in affecting a vital and unique organelle as the mitochondria, it could be considered a new hit compound for future drug design studies for Chagas disease.


Assuntos
Membrana Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Sesquiterpenos de Eudesmano/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Doença de Chagas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Lauraceae/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Caules de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/isolamento & purificação , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...